初三數(shù)學(xué)分為代數(shù)、幾何兩個部分。代數(shù)內(nèi)容有一元二次方程、函數(shù)及其圖象,統(tǒng)計初步三章;幾何內(nèi)容有解直角三角形和圓兩章。初三數(shù)學(xué)的學(xué)習(xí),是以前兩年數(shù)學(xué)學(xué)習(xí)為基礎(chǔ)的,是對已學(xué)知識的加深、拓寬、綜合與延續(xù),是初中數(shù)學(xué)學(xué)習(xí)的重點,也是中考考查的重點。為了學(xué)好初三數(shù)學(xué),不妨從以下幾個方面給予重視:
(一)狠抓“雙基”訓(xùn)練。
“雙基”即基礎(chǔ)知識與基本技能。基礎(chǔ)知識是指數(shù)學(xué)概念、定理、法則、公式以及各種知識之間的內(nèi)在聯(lián)系;基本技能是一種較穩(wěn)定的心理因素,是一種已經(jīng)程式化了的動作,初中數(shù)學(xué)基本技能包括運算技能、畫圖技能、運用數(shù)字語言的技能、推理論證的技能等。只有扎實地掌握“雙基”,才能靈活應(yīng)用、深入探索,不斷創(chuàng)新。
(二)注意前后聯(lián)系。
初三數(shù)學(xué)是以前兩年的學(xué)習(xí)內(nèi)容為基礎(chǔ)的,可以用來復(fù)習(xí)、鞏固相關(guān)的內(nèi)容,同時新知識的學(xué)習(xí)常常由舊知識引入或要用到前面所學(xué)過的內(nèi)容,甚至是已有知識的綜合、提高與延續(xù)。因此在學(xué)習(xí)中,要注意前后知識的聯(lián)系,以便達到鞏固與提高的目的。
(三)重視歸納梳理。
初三數(shù)學(xué)各章內(nèi)容豐富、綜合性強,學(xué)習(xí)過程中要及時進行歸納梳理,以便于對知識深入理解,系統(tǒng)掌握,靈活運用。要學(xué)會從橫向、縱向兩方面歸納梳理知識?v向主要是按照知識的來龍去脈進行總結(jié)歸納,如學(xué)完函數(shù),可按正比例函數(shù),一次函數(shù)、二次函數(shù)、反比例函數(shù)來歸納知識。橫向是平行的、相關(guān)的知識的整合,通過對比指出其區(qū)別與聯(lián)系,如學(xué)完二次函數(shù)之后,可把二次函數(shù)y=ax2+bx+c(a≠0)與一元二次方程ax2+bx+c=0(a≠0)之間的聯(lián)系進行歸納,這樣既可以鞏固新、舊知識,更可以提高綜合運用知識的能力,收到事半功倍的效果。
(四)掌握基本模型,找出本質(zhì)屬性。
中學(xué)的“數(shù)學(xué)模型”常常是指反映數(shù)學(xué)知識規(guī)律的結(jié)論和基本幾何圖形。初中代數(shù)中,運算法則、性質(zhì)、公式、方程、函數(shù)解析式等均是代數(shù)的模型;平面幾何中,各類知識中的基本圖形均是幾何模型。通過對這些基本模型的研究,能夠更好地掌握知識的本質(zhì)屬性,溝通知識間的聯(lián)系。重要的公式、定理是知識系統(tǒng)的主干,我們不僅要知其內(nèi)容,還應(yīng)該搞清其來龍去脈,理解其本質(zhì)。如一元二次方程的求根公式的推導(dǎo),不僅體現(xiàn)方法,而且由此公式可得出兩根與系數(shù)的關(guān)系,還可類似地推出二次函數(shù)的頂點坐標公式,所以一定要掌握推導(dǎo)過程。再如,相交弦定理、切割線定理、割線定理、切線長定理盡管形式上不盡相同,但是它們之間都有著某種內(nèi)在聯(lián)系。
聯(lián)系1:由兩條弦的交點運動及割線的運動將四條定理結(jié)論統(tǒng)一到PA·PB=PC·PD上來;
聯(lián)系2:結(jié)論形式上的統(tǒng)一:PA·PB=22OPR-(O為圓心,P為兩弦交點)。
所以也把相交弦定理、切割線定理、割線定理統(tǒng)稱為“圓冪定理”,這也是幾何的一個基本模型。
新初三快掃碼關(guān)注
中考網(wǎng)微信公眾號
每日推送學(xué)習(xí)技巧,學(xué)科知識點
助你迎接2020年中考!
歡迎使用手機、平板等移動設(shè)備訪問中考網(wǎng),2024中考一路陪伴同行!>>點擊查看