來源:網(wǎng)絡(luò)資源 作者:中考網(wǎng)編輯 2020-04-13 11:10:23
中考數(shù)學(xué)復(fù)習(xí):平面幾何六十個定理
1、勾股定理(畢達哥拉斯定理)
2、射影定理(歐幾里得定理)
3、三角形的三條中線交于一點,并且,各中線被這個點分成2:1的兩部分
4、四邊形兩邊中心的連線的兩條對角線中心的連線交于一點
5、間隔的連接六邊形的邊的中心所作出的兩個三角形的重心是重合的。
6、三角形各邊的垂直一平分線交于一點。
7、三角形的三條高線交于一點
8、設(shè)三角形ABC的外心為O,垂心為H,從O向BC邊引垂線,設(shè)垂足為L,則AH=2OL
9、三角形的外心,垂心,重心在同一條直線(歐拉線)上。
10、(九點圓或歐拉圓或費爾巴赫圓)三角形中,三邊中心、從各頂點向其對邊所引垂線的垂足,以及垂心與各頂點連線的中點,這九個點在同一個圓上,
11、歐拉定理:三角形的外心、重心、九點圓圓心、垂心依次位于同一直線(歐拉線)上
12、庫立奇*大上定理:(圓內(nèi)接四邊形的九點圓)
圓周上有四點,過其中任三點作三角形,這四個三角形的九點圓圓心都在同一圓周上,我們把過這四個九點圓圓心的圓叫做圓內(nèi)接四邊形的九點圓。
13、(內(nèi)心)三角形的三條內(nèi)角平分線交于一點,內(nèi)切圓的半徑公式:r=(s-a)(s-b)(s-c)s,s為三角形周長的一半
14、(旁心)三角形的一個內(nèi)角平分線和另外兩個頂點處的外角平分線交于一點
15、中線定理:(巴布斯定理)設(shè)三角形ABC的邊BC的中點為P,則有AB2+AC2=2(AP2+BP2)
16、斯圖爾特定理:P將三角形ABC的邊BC內(nèi)分成m:n,則有n×AB2+m×AC2=(m+n)AP2+mnm+nBC2
17、波羅摩及多定理:圓內(nèi)接四邊形ABCD的對角線互相垂直時,連接AB中點M和對角線交點E的直線垂直于CD
18、阿波羅尼斯定理:到兩定點A、B的距離之比為定比m:n(值不為1)的點P,位于將線段AB分成m:n的內(nèi)分點C和外分點D為直徑兩端點的定圓周上
19、托勒密定理:設(shè)四邊形ABCD內(nèi)接于圓,則有AB×CD+AD×BC=AC×BD
20、以任意三角形ABC的邊BC、CA、AB為底邊,分別向外作底角都是30度的等腰△BDC、△CEA、△AFB,則△DEF是正三角形
歡迎使用手機、平板等移動設(shè)備訪問中考網(wǎng),2024中考一路陪伴同行!>>點擊查看