幾何常見輔助線口訣
三角形
圖中有角平分線,可向兩邊作垂線。
也可將圖對折看,對稱以后關(guān)系現(xiàn)。
角平分線平行線,等腰三角形來添。
角平分線加垂線,三線合一試試看。
線段垂直平分線,常向兩端把線連。
線段和差及倍半,延長縮短可試驗。
線段和差不等式,移到同一三角去。
三角形中兩中點,連接則成中位線。
三角形中有中線,倍長中線得全等。
四邊形
平行四邊形出現(xiàn),對稱中心等分點。
梯形問題巧轉(zhuǎn)換,變?yōu)槿腔蚱剿摹?/div>
平移腰,移對角,兩腰延長作出高。
如果出現(xiàn)腰中點,細(xì)心連上中位線。
上述方法不奏效,過腰中點全等造。
證相似,比線段,添線平行成習(xí)慣。
等積式子比例換,尋找線段很關(guān)鍵。
直接證明有困難,等量代換少麻煩。
斜邊上面作高線,比例中項一大片。
圓形
半徑與弦長計算,弦心距來中間站。
圓上若有一切線,切點圓心半徑聯(lián)。
切線長度的計算,勾股定理最方便。
要想證明是切線,半徑垂線仔細(xì)辨。
是直徑,成半圓,想成直角徑連弦。
弧有中點圓心連,垂徑定理要記全。
圓周角邊兩條弦,直徑和弦端點連。
弦切角邊切線弦,同弧對角等找完。
要想作個外接圓,各邊作出中垂線。
還要作個內(nèi)接圓,內(nèi)角平分線夢圓。
如果遇到相交圓,不要忘作公共弦。
內(nèi)外相切的兩圓,經(jīng)過切點公切線。
若是添上連心線,切點肯定在上面。
要作等角添個圓,證明題目少困難。
歡迎使用手機(jī)、平板等移動設(shè)備訪問中考網(wǎng),2024中考一路陪伴同行!>>點擊查看