來源:網(wǎng)絡(luò)來源 作者:中考網(wǎng)編輯 2020-12-17 20:27:16
初三數(shù)學(xué)分為代數(shù)、幾何兩個(gè)部分。代數(shù)內(nèi)容有二次函數(shù),統(tǒng)計(jì)初步二章;幾何內(nèi)容有相似三角形、銳角三角比、圓與正多邊形三章。初三數(shù)學(xué)的學(xué)習(xí),是以前兩年數(shù)學(xué)學(xué)習(xí)為基礎(chǔ)的,是對已學(xué)知識的加深、拓寬、綜合與延續(xù),是初中數(shù)學(xué)學(xué)習(xí)的重點(diǎn),也是中考考查的重點(diǎn)。為了學(xué)好初三數(shù)學(xué),不妨從以下幾個(gè)方面給予重視:
1狠抓“雙基”訓(xùn)練
“雙基”即基礎(chǔ)知識與基本技能;A(chǔ)知識是指數(shù)學(xué)概念、定理、法則、公式以及各種知識之間的內(nèi)在聯(lián)系;基本技能是一種較穩(wěn)定的心理因素,是一種已經(jīng)程式化了的動作,初中數(shù)學(xué)基本技能包括運(yùn)算技能、畫圖技能、運(yùn)用數(shù)字語言的技能、推理論證的技能等。只有扎實(shí)地掌握“雙基”,才能靈活應(yīng)用、深入探索,不斷創(chuàng)新。
2注意前后聯(lián)系
初三數(shù)學(xué)是以前兩年的學(xué)習(xí)內(nèi)容為基礎(chǔ)的,可以用來復(fù)習(xí)、鞏固相關(guān)的內(nèi)容,同時(shí)新知識的學(xué)習(xí)常常由舊知識引入或要用到前面所學(xué)過的內(nèi)容,甚至是已有知識的綜合、提高與延續(xù)。因此在學(xué)習(xí)中,要注意前后知識的聯(lián)系,以便達(dá)到鞏固與提高的目的。
3重視歸納梳理
初三數(shù)學(xué)各章內(nèi)容豐富、綜合性強(qiáng),學(xué)習(xí)過程中要及時(shí)進(jìn)行歸納梳理,以便于對知識深入理解,系統(tǒng)掌握,靈活運(yùn)用。要學(xué)會從橫向、縱向兩方面歸納梳理知識。縱向主要是按照知識的來龍去脈進(jìn)行總結(jié)歸納,如學(xué)完函數(shù),可按正比例函數(shù),一次函數(shù)、二次函數(shù)、反比例函數(shù)來歸納知識。橫向是平行的、相關(guān)的知識的整合,通過對比指出其區(qū)別與聯(lián)系,如學(xué)完二次函數(shù)之后,可把二次函數(shù)y=ax2+bx+c(a≠0)與一元二次方程ax2+bx+c=0(a≠0)之間的聯(lián)系進(jìn)行歸納,這樣既可以鞏固新、舊知識,更可以提高綜合運(yùn)用知識的能力,收到事半功倍的效果。
4掌握基本模型,找出本質(zhì)屬性
中學(xué)的“數(shù)學(xué)模型”常常是指反映數(shù)學(xué)知識規(guī)律的結(jié)論和基本幾何圖形。初中代數(shù)中,運(yùn)算法則、性質(zhì)、公式、方程、函數(shù)解析式等均是代數(shù)的模型;平面幾何中,各類知識中的基本圖形均是幾何模型。通過對這些基本模型的研究,能夠更好地掌握知識的本質(zhì)屬性,溝通知識間的聯(lián)系。
重要的公式、定理是知識系統(tǒng)的主干,我們不僅要知其內(nèi)容,還應(yīng)該搞清其來龍去脈,理解其本質(zhì)。
如一元二次方程的求根公式的推導(dǎo),不僅體現(xiàn)方法,而且由此公式可類似地推出二次函數(shù)的頂點(diǎn)坐標(biāo)公式,所以一定要掌握推導(dǎo)過程。
再如,相似三角形中的“A字形“和“8字形“,這是初三幾何圖形的基本模型,一定要掌握其中的各種變式。
5掌握數(shù)學(xué)思想方法
數(shù)學(xué)思想方解決數(shù)學(xué)問題的靈魂,是形成數(shù)學(xué)能力、數(shù)學(xué)意識的橋梁,是靈活運(yùn)用數(shù)學(xué)知識、技能的關(guān)鍵。在解數(shù)學(xué)綜合題時(shí),尤其需要用數(shù)學(xué)思想方法來統(tǒng)帥,去探求解題思路,優(yōu)化解題過程,驗(yàn)證所得結(jié)論。
在初三這一年的數(shù)學(xué)學(xué)習(xí)中,常用的數(shù)學(xué)方法有:消元法、換元法、配方法、待定系數(shù)法、反證法、作圖法等;常用的數(shù)學(xué)思想有:轉(zhuǎn)化思想,函數(shù)與方程思想、數(shù)形結(jié)合思想、分類討論思想。
如轉(zhuǎn)化思想就是把待解決或難解決的問題,通過某種轉(zhuǎn)化手段,使它轉(zhuǎn)化成已經(jīng)解決或比較容易解決的問題,從而求得原問題的解答。轉(zhuǎn)化思想是一種最基本的數(shù)學(xué)思想,如在運(yùn)用換元法解方程時(shí),就是通過“換元”這個(gè)手段,把分式方程轉(zhuǎn)化為整式方程,把高次方程轉(zhuǎn)化為低次方程,總之把結(jié)構(gòu)復(fù)雜的方程化為結(jié)構(gòu)簡單的方程。學(xué)習(xí)和掌握轉(zhuǎn)化思想有利于我們從更高的層次去揭示、把握數(shù)學(xué)知識、方法之間的內(nèi)在聯(lián)系,樹立辯證的觀點(diǎn),提高分析問題和解決問題的能力。
再如函數(shù)思想就是用運(yùn)動變化的觀點(diǎn),分析和研究具體問題中的數(shù)量關(guān)系,用函數(shù)的形式,把這種數(shù)量關(guān)系表示出來并加以研究,從而使問題得到解決。
相關(guān)推薦:
2021年全國各省市中考報(bào)名時(shí)間匯總
2021年全國各地中考體育考試方案匯總
2021年全國各省市中考時(shí)間匯總
關(guān)注中考網(wǎng)微信公眾號
每日推送中考知識點(diǎn),應(yīng)試技巧
助你迎接2021年中考!
歡迎使用手機(jī)、平板等移動設(shè)備訪問中考網(wǎng),2023中考一路陪伴同行!>>點(diǎn)擊查看