來源:網絡資源 2023-09-12 21:13:03
1.概念、分類及性質
三角形
①——由不在同一直線上的三條線段首尾順次相接所組成的圖形。
角的角平分線與三角形角平分線的區(qū)別
②:角的角平分線是一條射線,三角形的角平分線是一條線段。
③三角形三條角平分線和三條中線在三角形的內部,三角形的三條高卻不一定在三角形的內部:銳角三角形的三條高在三角形的內部,直角三角形的三條高的交點在垂足位置,鈍角三角線的三條高在三角形的外部。
在此不詳細介紹等腰三角形、直角三角形、等邊三角形的概念
三角形的性質
④
三角形三邊關系——三角形任何兩邊的和大于第三邊,任何兩邊的差小于第三邊
三角形三角關系——三角形三個內角的和等于180°
三角形一個外角等于與它不相鄰的兩個內角和
直角三角形的兩個銳角互余
2.全等三角形的概念、性質和判定方法
①全等三角形的概念——完全重合的兩個三角形
②全等三角形的性質——對應邊相等,對應角相等,對應高、對應中線、對應角平分線也相等
③全等三角形的判定——SSS、SAS、AAS、ASA、HL
④垂直平分線及角平分線的性質和判定
3.等腰三角形的性質及判定方法
(1)等腰三角形的性質——兩底角相等;“三線合一”
等邊三角形的各邊及各角均相等,并且每一角均為60°
(2)等腰三角形的判定:
判定定理:如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等
定理推論:
①三個角都相等的三角形是等邊三角形
②有一個角是60°的等腰三角形是等邊三角形
③在直角三角形中,30°角所對的直角邊等于斜邊的一般
4.尺規(guī)作圖:無刻度尺+圓規(guī)
編輯推薦:
歡迎使用手機、平板等移動設備訪問中考網,2024中考一路陪伴同行!>>點擊查看